Experimental methods in trace gas research

14-04-2011

Please use the provided paper sheets to write down the solutions of the problems. Write your name and student ID number on a first page and enumerate all subsequent pages. Do not forget to hand in your paperwork after the examination.

Problem 1.

In first approximation, acetylene C_2H_2 can be considered as a molecule of linear structure with a rotational constant $B = 1.17 \ cm^{-1}$.

- a) How many vibrational degrees of freedom does this molecule have?
- b) What rotational level of C_2H_2 does have the larger population at room temperature: the level with the rotational number J = 5 or that with J = 20?
- c) A researcher is going to measure the ratio between concentrations of isotopic molecules C_2H_2 and C_2HD . He estimated the distance between the spectral lines of these species at wavenumber around 3400 cm⁻¹ to be of order 0.2 cm⁻¹. Can these lines be distinguished at room temperature? Molecular weights of C_2H_2 and C_2HD are 26 and 27 g/mole, respectively.

Problem 2.

Concentrations of OH molecules in air are measured by using the tunable diode laser absorption (TDLA) method. Measurements are performed at room temperature (T = 300 K) and atmospheric pressure ($P = 1.01325 \cdot 10^6 \ erg/cm^2$) in vicinity of the P(5.5) spectral line with the wavenumber $\tilde{v} = 3367.038 \text{ cm}^{-1}$ and intensity $S = 2.622 \cdot 10^{-20} \frac{cm^{-1}}{molecule \cdot cm^{-2}}$.

- a) The wavenumber of the P(6.5) line is 3324.577 cm⁻¹. Find the rotational constant of the OH molecule.
- b) What ratio between initial and transmitted signal is expected in cell of length L = 1 with 100 ppm OH in air when the laser is tuned to the center of the P(5.5) line? The spectral line profile can be considered to be Lorentzian with the width $\Delta \tilde{v} = 0.06 \ cm^{-1}$.
- c) Does the width of the spectral line profile decrease or increase if the temperature increases?

Problem 3.

A researcher is going to build an optical setup for measuring sizes and concentrations of nonabsorbing spherical particles. It is expected that the particles are monodisperse with diameters smaller than 50 nm.

- a) The researcher has two lasers for using in his setup with wavelengths 0.75 μm and 0.5 μm and powers 5W and 100 mW, respectively. What laser will provide a larger scattered signal?
- b) The researcher decided to determine the particle number density by measuring the extinction coefficient. Sketch the experimental setup for the extinction measurements and explain how to derive the number density from the extinction measurements if the particle diameter d_p and refraction index *m* of the particle's substance are known.
- c) The number density of particles is 10^{14} m⁻³. What is the diameter of the particle if the volume fraction of the particles is 1 ppb?

Problem 4.

- a) Which "masses", i.e. ion beam signals at a certain m/e number, can we expect to find in a mass spectrum of pure CO₂ and what ions are they derived from?
- b) Measuring CO₂, cryogenically extracted from air, which isotopomers are collected at m/e=46?
- c) Why is it physically possible to separate HD from ³He by magnetic mass spectrometry, as both have the same mass of 3 atomic mass units?

Physical constants and conversion factors

Velocity of light in vacuum	с	2.99792458·10 ¹⁰ cm/s
Planck's constant	h	6.626076·10 ⁻²⁷ erg/s
Electronic charge	е	4.803206·10 ⁻¹⁰ abs.e.s.u.
Electronic mass	m _e	9.109390·10 ⁻²⁸ g
Mass of proton	m _p	1.672623·10 ⁻²⁴ g
1/12 mass of the C ¹² atom	M ₁	1.660540·10 ⁻²⁴ g
Number of atoms in mole	N _A	$6.022137 \cdot 10^{23}$
Boltzamann's constant	k	1.38066·10 ⁻¹⁶ erg/K
Gas constant per mole	R	8.31451·10 ⁷ erg/K·mole

Conversion factors for energy units

	1 J	1 erg	1 eV	1 K	1 cm ⁻¹	
1 J	1	10 ⁷	$6.2415 \cdot 10^{18}$	7.2429·10 ²²	5.0341·10 ²²	
1 erg	10-7	1	$6.2415 \cdot 10^{11}$	7.2429·10 ¹⁵	5.0341·10 ¹⁵	
1 eV	$1.6022 \cdot 10^{-19}$	$1.6022 \cdot 10^{-12}$	1	11604	8065.5	
1 K	1.3807·10 ⁻²³	1.3807·10 ⁻¹⁶	8.6174·10 ⁻⁵	1	0.69504	
1 cm ⁻¹	1.9864·10 ⁻²³	1.9864·10 ⁻¹⁶	1.2398·10 ⁻⁴	1.4388	1	

													7.25		16.4	
	re H	10 0/0	10 3	nic weight	80 52.69		6 * 10 ⁻⁴ 106.42		0.001 195.05 un			8	64 Gadoliniur	15.0	Lutethum	
	Abundan	Earth crust,	MO 95	nent Atom	28 U		⁴ ⁹¹ 46 Pd	-	6 2.22 Platim			2.1	F.U 151.96 ropium	5.3	terbium	
		EL	Symbol Atomic Atomic	Eler	20 27C0 58.9. Cobalt		2*10 ⁻ 15 Rh 102 3hodium		Ir 3 * 10			6.7	n 150.36 63 um Et	.48	1 106.93 7(
		_	S 10Ne Neon	Ar Ar	345	5 Kr	-0'10	6 4Xe	90.23	86 Rn Radon	des		V 62 Stm Samari	6	Thullur Thullur	
		VII	7.10	39.948	41000 26 Fe 55 Iron	1×10 83.798 3	0.001 44Ru J Ruthenium	2+10 ⁻ 131.29 5	$7_6 O_S \stackrel{1 \times 1}{}_L O_S \stackrel{1 \times 1}{}_L$	1 120.2221	ntani		Pm 1144.9. omethium	3.8	blum	
U	5 N		950 9Fluorine	u 130 1 ₁ ,CI Chlorine	950 54.938 85e	0.37 35Br Bromine	0 ⁷⁴ 197.907	0.14 53 I Iodine	*10 ⁻⁴ 186.21	85 ^{At} Astatine	La	38	144.24 61 htm Pr		104.93 68	
αhi			13.998	35.45	25 ^{MIn} Mangano	-9.904	7+1 43Tc Technethu	126.96	₇₅ Re ⁴ Rhenium	166'6021			60.Nd Neodym	1, 1,	Holmit	
Wei		1A	47.4000 999 80 Oxygen	260 55 16S Sulfur	100 r <i>51.996</i> nium	0.05 96 34 Selenium	1.5 0 95.94 denum	0.005 .60 52Te Tellurium	. 1.0 133.34 ten	93/ 84 Polonium		3.9	591 140.91 Praseodymium	6.0 Dv 122.00	Jysprosium	Mft [263.14] nerium
			r 15.5	32.06 US	24Ct	S .3.	42 Mc		7.4W Tungst	i /208.5			10.12	10 01	1	7/ 109
tom	A C C AA	>	25	151 Phosphor	160 V 52.942 radium	1.5 -4.922 33A	20 V b 92.906 bium	0.2 1.76 51 Antimon		2.93 0.048 Bismut		89 89	58 Cerium	Th	65 ⁴ U Terbium	108 Hs /26 Hassium
N N	3		0 6C Carbon	22.036 1(14Si Silicon		32Ge	1124 41 ⁷	So Sn 12	T ₅₇ %	203 Lead			190 EF.1	chun	Ad <i>1252.101</i> Jelevium	1264.12/ um
dar	TX7	IV	12.011	1000	5600 2. 1. 4.5. 1. 4.5. 1. 4.5.	1.8 1.6 1.8	190 .0Zr 91	2.2		207.2 8			1907	95.41 Americ	T.10J 101 N	6.12/ 107 B
191	L	T	10 §B Boron	26.932 2 13AI huminium	4.956 2 TI	31 Ga Gallium	23.906	49 49 Indium	138.90 T	6 TI 81 Thallium	[so-22]		pu 1244	9.4 u /	100 Fm <i>125</i> Fermium	106 Sg 126 Seaborgium
		TT	10.21	82000 A	16 21 Scandium	18	30 39Y Yttrium	0.0	5-La ³² Lanthanum	204.38	89Ac Actinium	es	257.05	r	S /252.03/ elnium	16 /262.11/ hum
II	0.008 03 2He	Hellum	2.6 9.012 m	3000 24.305 ium	41000 40.05	75 30 Zinc Zinc	370 87.62 mn	r Cadmium	00 137.33	0.05 Hg 80 Mercury	6 *10 ⁻⁷ [226.02] m	tinid	N 30	93-1 Nephi	1.03/ 39 Einst	hum Dubn
	10.4	10.4	Berlliu	2 12Mg Magnes	20 ^{Ca}	65.405	38 38 Stronth	+.211	56 56 Barlum	200.59	88 Radiu	Ac	2.4	Jranhun	98 Cf 725 Californiun	04 Rf /2 Sutherford
I	1520 1.00°0	ten	20 j 6.941 m	23000 a 22.990 m	21000 39.095 shum	50 6 29Cu Copper	90 25.403 m	0.07 7 47 Ag Silver	3.0 S 132.90 m	0.0011 79-Au 57 79-Au Gold	, <i>1223.02]</i>			1 231.04 U	k rearing	,r /262.11/
	H	Hydrog	Lithiu	11 No	19K Potas	63.54	3.7 Rb Rubidit	107.3	SS Cestu Cestu	196.9	87 Fi		D°	Protac	06/ 9-Berk	10/ 103 I
Group	1		2	ю	-1		ic	,	3	Y	٢		12 Th 220	Thoritam	96Cm 1247.0 Curium	102 No 1259. Nobellum

Formulas

$$\widehat{H}_{t}\Psi(\overrightarrow{R_{1}},\ldots\overrightarrow{R_{N}},\overrightarrow{r_{1}},\ldots,\overrightarrow{r_{n}}) = E\Psi(\overrightarrow{R_{1}},\ldots\overrightarrow{R_{N}},\overrightarrow{r_{1}},\ldots,\overrightarrow{r_{n}})$$
(2.1)

$$\widehat{H}_{t} = -\frac{\hbar^{2}}{2} \sum_{i}^{N} \frac{\Delta_{i}}{M_{i}} - \frac{\hbar^{2}}{2} \sum_{j}^{n} \frac{\Delta_{j}}{m_{e}} + \sum_{i,j} \frac{Z_{i}Z_{j}e^{2}}{|\overrightarrow{R_{i}} - \overrightarrow{R_{j}}|} + \sum_{i,j} \frac{e^{2}}{|\overrightarrow{r_{i}} - \overrightarrow{r_{j}}|} - \sum_{i,j} \frac{Z_{i}e^{2}}{|\overrightarrow{R_{i}} - \overrightarrow{r_{j}}|}$$
(2.2)

$$\hat{H}_{e} = -\frac{\hbar^{2}}{2} \sum_{j}^{n} \frac{\Delta_{j}}{m_{e}} + \sum_{i,j} \frac{e^{2}}{|\vec{r_{i}} - \vec{r_{j}}|} - \sum_{i,j} \frac{Z_{i}e^{2}}{|\vec{R_{i}} - \vec{r_{j}}|} + \sum_{i,j} \frac{Z_{i}Z_{j}e^{2}}{|\vec{R_{i}} - \vec{R_{j}}|}$$

$$\hat{H}_{N} = -\frac{\hbar^{2}}{2} \sum_{i}^{N} \frac{\Delta_{i}}{M_{i}}$$
(2.3)

$$\widehat{H}_e \Psi_e \left(\vec{R}_1, \dots, \vec{R}_N, \vec{r}_1, \dots, \vec{r}_n \right) = E_e \left(\vec{R}_1, \dots, \vec{R}_N \right) \Psi_e \left(\vec{R}_1, \dots, \vec{R}_N, \vec{r}_1, \dots, \vec{r}_n \right)$$
(2.4)

$$\Psi(\vec{R}_{1},...\vec{R}_{N},\vec{r}_{1},...,\vec{r}_{n}) = \sum_{k} \Phi_{n}(\vec{R}_{1},...,\vec{R}_{N})\Psi_{e}^{k}(\vec{R}_{1},...\vec{R}_{N},\vec{r}_{1},...,\vec{r}_{n})$$
(2.5)

$$\left(-\frac{\hbar^2}{2}\sum_{i}^{N}\frac{\Delta_i}{M_i} + E_e(R_1, \dots, R_N)\right)\Phi_k\left(\vec{R}_1, \dots, \vec{R}_N\right) = E\Phi_k\left(\vec{R}_1, \dots, \vec{R}_N\right)$$
(2.6)

$$E_e(R) = 4\epsilon \left(\left(\frac{\sigma}{R}\right)^{12} - \left(\frac{\sigma}{R}\right)^6 \right) = \epsilon \left(\left(\frac{R_m}{R}\right)^{12} - 2\left(\frac{R_m}{R}\right)^6 \right)$$
(2.7)

$$\widehat{H}_{rot}\Phi_r(q_r) = E_{rot}\Phi_r(q_r)
\widehat{H}_1\Phi_\nu(q_\nu) = E_1\Phi_\nu(q_\nu)$$
(2.7)

$$E_{\rm rot} = \frac{\hbar^2}{2I_{\rm M}} J(J+1) = BJ(J+1)$$
(2.10)

$$E_{e}(Q_{1}, \dots, Q_{N_{vib}}) \cong E_{e}(Q_{1}^{0}, Q_{2}^{0}, \dots, Q_{N_{vib}}^{0}) + \frac{1}{2}\sum_{i} \frac{\partial^{2} E_{e}}{\partial Q_{i}^{2}} (Q_{i} - Q_{i}^{0})^{2}$$
(2.11)

$$E_{vib} = \hbar \sum_{i} \omega_i \left(v_i + \frac{1}{2} \right)$$
(2.12)

$$E_{vib} = \hbar \sum_{i} \omega_i \left(v_i + \frac{1}{2} \right) - \hbar \sum_{i} \omega_i x_{ie} \left(v_i + \frac{1}{2} \right)^2$$
(2.12)

$$E_{el}: E_{vib}: E_{rot} \sim 1: \sqrt{\frac{m_e}{M_N}}: \frac{m_e}{M_N}$$
(2.13)

$$E = E_{el}(R) + \hbar\omega_e \left(\nu + \frac{1}{2}\right) + B_{rot}J(J+1)$$
(2.14)

$$i\hbar\frac{\partial\Psi}{\partial t} = \widehat{H}\Psi$$
(5.1)

$$\hbar\omega_0 = E_k - E_i \tag{5.2}$$

$$w_{ik} = \frac{2\pi}{3\hbar^2 cg_k} (\vec{\mu}_{ik})^2 \rho_{\omega}$$
(5.3)

$$w_{ik} = B_{ik}\rho_{\omega} \tag{5.4}$$

$$w_{ki} = A_{ki} + B_{ki}\rho_{\omega} \tag{5.5}$$

$$A_{ki} = \frac{2\hbar\omega^3}{\pi c^2} B_{ki} \text{ and } B_{ki} = B_{ik} \frac{g_i}{g_k}$$
(5.6)

$$I_{\omega} = N_{\omega}c \quad \left[\frac{photons}{m^2s}\right] \tag{5.7}$$

$$I = \hbar\omega N_{\omega}c \quad \left[\frac{W}{m^2}\right] \tag{5.8}$$

$$\nu = \frac{c}{\lambda} \tag{5.9}$$

$$\tilde{\nu} = \frac{1}{\lambda} = \frac{c}{\nu} \tag{5.10}$$

$$\sigma_{ik} = \frac{B_{ik}}{c} \hbar \omega_{ki}$$
(5.11)

$$I_{\omega}(x) = I_{\omega}(0) \exp(-\sigma_{ik} N_i x)$$
(5.12)

$$I_{\omega}(x) = I_{\omega}(0)exp(-k_{ik}x)$$
(5.13)

$$N_i = N \frac{g_i \exp\left(-\frac{E_i}{kT}\right)}{Z(T)}$$
(5.14)

$$Z(T) = \sum_{i} g_{i} \exp\left(-\frac{E_{i}}{\kappa T}\right)$$
(5.15)

$$Z(T) = Z_{rot}(T) \cdot Z_{vib}(T) \cdot Z_{el}(T)$$
(5.16)

$$Z_{rot}(T) = \sum_{j} (2j+1)e^{-\frac{Bj(j+1)}{kT}} \cong \int 2xe^{-Bx^2} dx = \frac{kT}{B}$$
(5.17)

$$N_{\nu j} = N_{\nu} (2j+1) \frac{B}{kT} exp\left(-\frac{Bj(j+1)}{kT}\right)$$
(5.18)

$$Z_{vib}(T) = \sum_{n} e^{-\frac{\hbar\omega_{vib}n}{kT}} = \frac{1}{1 - exp\left(-\frac{\hbar\omega}{kT}\right)}$$
(5.19)

$$N_{\nu} = N_{e} \exp\left(-\frac{\hbar\omega_{\nu ib}n}{kT}\right) \left(1 - \exp\left(-\frac{\hbar\omega_{\nu ib}}{kT}\right)\right)$$
(5.20)

$$k_{ik}(\omega) = K_{ik}L_{\omega}(\omega)$$
(5.21)

$$I_{\omega}(\omega) = \frac{2\pi}{\lambda^2} I_{\lambda}(\lambda) = 2\pi c I_{\widetilde{\nu}}(\widetilde{\nu})$$
(5.22)

$$L(\omega) = \frac{2\Delta\omega_n}{\pi} \frac{1}{4(\omega - \omega_{kl})^2 + \Delta\omega_n^2}$$
(5.23)

$$\Delta\omega_n = \frac{1}{\tau_k} = \sum_i A_{ki} \tag{5.24}$$

$$L(\omega) = \frac{2}{\Delta\omega_D} \sqrt{\frac{\ln 2}{\pi}} exp\left(-4\ln 2\left(\frac{\omega-\omega_0}{\Delta\omega_D}\right)^2\right)$$
(5.25)

$$\Delta\omega_D = 2\frac{\omega_0}{c}\sqrt{\frac{(2\ln 2)RT}{M}}$$
(5.26)

$$L(\omega) = \int_{-\infty}^{\infty} L_L(\omega') L_D(\omega - \omega') d\omega'$$

= $\frac{4\Delta\omega_L}{\pi\Delta\omega_D} \sqrt{\frac{\ln 2}{\pi}} \int_{-\infty}^{\infty} \frac{1}{4(\omega' - \omega - \omega_0)^2 + \Delta\omega_L^2} exp\left(-4\ln 2\left(\frac{\omega' - \omega_0}{\Delta\omega_D}\right)^2\right) d\omega'$ (5.27)

$$\hbar\omega = E' - E'' = E'_e + E'_{vib} + E'_{rot} - E''_e - E''_{vib} - E''_{rot}$$
(6.1)

$$\tilde{\nu} = E'_{rot} - E''_{rot} = BJ'(J'+1) - BJ''(J''+1)$$
(6.2)

$$\tilde{\nu} = B(J+1)(J+2) - BJ(J+1) = 2B(J+1)$$
(6.3)

$$\widetilde{\nu} = E'_{vib} + E'_{rot} - E''_{vib} - E''_{rot} = \widetilde{\nu}_0 \left(\nu' + \frac{1}{2} \right) + BJ'(J' + 1) - \widetilde{\nu}_0 \left(\nu'' + \frac{1}{2} \right) - BJ''(J'' + 1)$$
(6.4)

$$\tilde{\nu}_{P} = \tilde{\nu}_{0} + B(J-1)J - BJ(J+1) = \tilde{\nu}_{0} - 2BJ$$
(6.5)

$$\tilde{\nu}_R = \tilde{\nu}_0 + B(J+1)(J+2) - BJ(J+1) = \tilde{\nu}_0 + 2B + 2BJ$$
(6.6)

$$S_{ik} = \frac{h\tilde{v}}{c} \frac{N_i}{N} \left(1 - \frac{g_i}{g_k} \frac{N_k}{N_i} \right) B_{ik}$$
(6.7)

$$S_{ik}(T) = S_{ik}\left(T_{ref}\right) \frac{Z(T_{ref})}{Z(T)} \frac{exp\left(-\frac{c_2 E_i}{T}\right)}{exp\left(-\frac{c_2 E_i}{T_{ref}}\right)} \frac{\left(1 - exp\left(-\frac{c_2 \widetilde{v}_{ik}}{T}\right)\right)}{\left(1 - exp\left(-\frac{c_2 \widetilde{v}_{ik}}{T_{ref}}\right)\right)}$$
(6.8)

$$k_{ik}(\tilde{\nu}, P, T) = S_{ik}(T)L_{\tilde{\nu}}(\tilde{\nu}, P, T)N$$
(6.9)

$$k(\tilde{\nu}, P, T) = \sum_{j} S_{j}(T) L_{j,\tilde{\nu}}(\tilde{\nu}, P, T) \frac{X_{j}P}{kT}$$
(6.10)

$$\Delta \tilde{\nu}_L = \left(\frac{T_{ref}}{T}\right)^n \left(\gamma_{air} \left(1 - X_j\right) + \gamma_{self} X_j\right) P$$
(6.11)

$$N = \frac{1}{S_{ik}(T)L_{\widetilde{\nu}}(\widetilde{\nu},P,T)l} \ln\left(C\frac{l_2}{l_1}\right)$$
(6.12)

$$N = \frac{\delta \tilde{v}}{s_{ik}(T)l} \sum_{i} ln \left(C \frac{l_2(\tilde{v}_i)}{l_1(\tilde{v}_i)} \right)$$
(6.13)

$$N = AS + B \tag{6.14}$$

$$N_{lim} = \frac{1}{S_{ik}L_{\nu}l}\sqrt{\left(\frac{\delta I_2}{I_2}\right)^2 + \left(\frac{\delta I_1}{I_1}\right)^2}$$
(6.15)

$$\frac{dN_k}{dt} = \frac{B_{ik}}{c} I_v N_i - \frac{B_{ki}}{c} I_v N_k - (A_{ki} + Q_{ki}) N_k$$

$$\frac{dN_i}{dt} = -\frac{B_{ik}}{c} I_v N_i + \frac{B_{ki}}{c} I_v N_k + (A_{ki} + Q_{ki}) N_k$$
(7.1)

$$N_k(t) = \frac{B_{ik}}{c} I_{\nu} N_0 \tau \left(1 - e^{-\frac{t}{\tau}} \right)$$
(7.2)

$$N_{k} = \frac{B_{ik}}{c} I_{\nu} N_{0} \tau = N_{0} \frac{B_{ik}}{B_{ik} + B_{ki}} \frac{1}{1 + \frac{I_{\nu}^{sat}}{I_{\nu}}} = N_{0} \frac{g_{k}}{g_{k} + g_{i}} \frac{1}{1 + \frac{I_{\nu}^{sat}}{I_{\nu}}}$$
(7.3)

$$I_{\nu}^{sat} = \frac{(A_{ki} + Q_{ki})c}{B_{ik} + B_{ki}}$$
(7.4)

$$N_{k} = \frac{\frac{N_{0}B_{ik}}{c}I_{\nu}}{A_{ki}+Q_{ki}} = \frac{N_{0}g_{k}}{g_{k}+g_{i}}\frac{I_{\nu}}{I_{\nu}^{sat}}, \quad I_{\nu} \ll I_{\nu}^{sat}$$

$$N_{k} = \frac{N_{0}g_{k}}{g_{k}+g_{i}}, \qquad I_{\nu} \gg I_{\nu}^{sat}$$
(7.5)

$$I_{fl} = A_{ik} N_k \Delta V \frac{\Omega}{4\pi}$$
(7.6)

$$I_{fl} = \eta \epsilon A_{ik} N_k lS \frac{\Omega}{4\pi}$$
(7.7)

$$I_{fl} = \eta \epsilon \frac{\Omega}{4\pi} lS \frac{A_{ki}}{A_{ki} + Q_{ki}} \frac{N_0 B_{ik}}{c} I_v = \eta \epsilon \frac{\Omega}{4\pi} lS \frac{I_v}{I_v^{sat}} \frac{N_0 g_k}{g_i + g_k} A_{ki}$$
(linear) (7.7)

$$I_{fl} = \eta \epsilon \frac{\alpha}{4\pi} lS \frac{N_0 g_k}{g_l + g_k} A_{kl}$$
(saturation) (7.8)

$$N_{lim}^{sat} = \frac{1}{\eta \epsilon_{4\pi}^{\Omega} l S \frac{g_k}{g_k + g_i} A_{ki} \Delta t}$$
(7.9)

$$I_{\nu,free}^{sat} = \frac{A_{ki}c}{B_{ik}(1+g_i/g_k)} = \frac{8\pi\hbar c}{\lambda^3} \frac{g_k}{g_i+g_k}$$
(7.10)

$$I_{\nu}^{sat} = I_{\nu,free}^{sat} \frac{Q_{ik}}{A_{ik}}$$
(7.11)

$$\frac{dN_k}{dt} = \frac{B_{ik}}{c} I_v N_i - \frac{B_{ki}}{c} I_v N_k + \sum_{j \neq k} Q_{jk} N_j -N_k \sum_{j \neq k} (Q_{kj} + A_{kj}) - N_k W_k$$
(7.12)

$$\frac{dN_k}{dt} = \frac{\frac{B_{ik}}{c}I_{\nu}N_0 e^{-\frac{E_i}{kT}}}{Z(T)} - N_k(Q_k + A_k)$$
(7.13)

$$S_{fl} = \int_0^{t_s} l_{fl}(t) dt = \eta \epsilon A_{ki} \frac{\Omega}{4\pi} lS \int_0^{t_s} N_k(t) dt = \eta \epsilon A_{ki} \frac{\Omega}{4\pi} l \frac{\frac{B_{ik}}{c} N_0 e^{-\frac{E_i}{kT_E_l}}}{Z(T)(Q_k + A_k) \Delta v_l}$$

$$(7.14)$$

$$N_{0} = N_{cal} \frac{S_{fl}}{S_{fl}^{cal}} \frac{E_{l}^{cal}}{E_{l}}$$
(7.15)

$$N_{0} = N_{cal} \frac{S_{fl}}{S_{fl}^{cal}} \frac{E_{l}^{cal}}{E_{l}} e^{-\frac{E_{l}}{k} \left(\frac{1}{T_{cal}} - \frac{1}{T}\right)} \frac{Z(T)}{Z(T_{cal})} \frac{Q_{k} + A_{k}}{Q_{k,cal} + A_{k}}$$
(7.16)

$$\rho = \rho_p V N \tag{13.1}$$

$$\phi = VN \tag{13.2}$$

$$dN = n_d (d_p, \vec{r}, t) d(d_p)$$
(13.3)

$$\int_0^\infty n_d(d_p, \vec{r}, t) d(d_p) = N$$
(13.4)

$$\overline{d_p} = \frac{1}{N} \int_0^\infty d_p n_d(d_p, \vec{r}, t) d(d_p)$$
(13.5)

$$A = \int_0^\infty \pi d_p^2 n_d \left(d_p, \vec{r}, t \right) d\left(d_p \right)$$
(13.6)

$$\phi = \int_0^\infty \pi \frac{d_p^3}{6} n_d(d_p, \vec{r}, t) \, d(d_p) \tag{13.7}$$

$$I = \frac{I_0 F(\theta, \phi, \lambda)}{\left(\frac{2\pi r}{\lambda}\right)^2}$$
(13.8)

$$\sigma_{sc} = \left(\frac{\lambda}{2\pi}\right)^2 \int_0^{2\pi} \int_0^{\pi} F(\theta, \phi, \lambda) \sin\theta \, d\theta \, d\phi$$
(13.9)

$$Q_{sc} = \frac{s_{sc}}{s_g} \tag{13.10}$$

$$Q_{sc} = \frac{\int_0^{2\pi} \int_0^{\pi} F(\theta, \phi, \lambda) \sin \theta \, d\theta \, d\phi}{\left(\frac{2\pi}{\lambda}\right)^2 s_g} \tag{13.11}$$

$$Q_{ext} = Q_{sc} + Q_{abs} \tag{13.12}$$

$$\vec{p} = \alpha \vec{E}$$
(13.13)

$$I = (1 + \cos^2 \theta) \frac{k^4 \alpha^2}{2r^2} I_0$$
(13.14)

$$\alpha = \frac{3}{4\pi} \frac{(m^2 - 1)}{m^2 + 2} V \tag{13.15}$$

$$Q_{sc} = \frac{8}{3} x^4 \frac{m^2 - 1}{m^2 + 2} \tag{13.16}$$

$$\begin{array}{c} m = n - in' \\ n^2 - n'^2 = \epsilon \\ nn' = \frac{\lambda\sigma}{c} \end{array}$$

$$(13.17)$$

$$Q_{sc} = \frac{8}{3} x^4 \operatorname{Re}\left(\frac{m^2 - 1}{m^2 + 2}\right)$$
(13.18)

$$Q_{abs} = -4xIm\left(\frac{m^2 - 1}{m^2 + 2}\right)$$
(13.19)

$$P_{sc} = \frac{\pi d_p^2}{4} Q_{sc} N_p \Delta V I_0$$
(13.20)

$$P_{sc} = \int_0^\infty \frac{\pi d_p^2}{4} Q_{sc}(d_p) n_p(d_p) \, d(d_p) \, \Delta V$$
(13.21)

$$dI = -I\left[\int_{0}^{\infty} \frac{\pi d_{p}^{2}}{4} Q_{ext}(d_{p}) n_{p}(d_{p}) d(d_{p})\right] dx$$
(13.22)

$$k(x) = \int_0^\infty \frac{\pi d_p^2}{4} Q_{ext}(d_p) n_p(d_p) d(d_p)$$
(13.23)

$$I = I(0)e^{-\kappa L} = I(0)e^{-L\int_0^{\infty} \frac{\pi d_p^2}{4}Q_{ext}(d_p)n_p(d_p)d(d_p)}$$
(13.24)

$$k = \int_{-\infty}^{\infty} \frac{d\kappa}{d\log d_p} d\log d_p$$

$$(13.25)$$

$$\frac{d\kappa}{d\log d_p} = \frac{3}{2} \frac{Q_{ext}}{d_p} n_p(d_p) \frac{dV}{d\log d_p}$$

$$(13.26)$$